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One main evolution path in numerical methods for PDEs:

Finite Differences (FD) First general numerical approach for solving PDEs

(1910) FD weights obtained by using local polynomial approximations
Pseudospectral (PS) Can be seen either as the limit of increasing order FD methods,
(1970) or as approximations by basis functions, such as Fourier or

Chebyshev; often very accurate, but low geometric flexibility

->

Radial Basis Functions (RBF) Choose instead as basis functions translates of radially

(1972) symmetric functions:
PS becomes a special case, but now possible to scatter nodes in
any number of dimensions, with no danger of singularities

->

RBF-FD Radial Basis Function-generated FD formulas. All approximations
(2000) again local, but nodes can now be placed freely
- Easy to achieve high orders of accuracy (4t to 8t" order)
- Excellent for distributed memory computers / GPUs
- Local node refinement trivial in any number of
dimensions (for ex. in 5+ dimensional mathematical

finance applications).
Slide 2 of 21



Meshes vs. Mesh-free discretizations

Structured meshes:
Finite Differences (FD),
Discontinuous Galerkin (DG)
Finite Volumes (FV)
Spectral Elements (SE)
Require domain decomposition /
curvilinear mappings

Unstructured meshes:

Finite Elements (FE)

Improved geometric flexibility; requires
triangles, tetrahedra, etc.

Mesh-free:

Radial Basis Function generated FD (RBF-FD )
Use RBF methods to generate weights in
scattered node local FD formulas

Total geometric flexibility; needs
just scattered nodes, but no connectivities,
e.g. no triangles or mappings
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Unstructured meshes:

In 2-D: Quick to go from quasi-uniform nodes to well-balanced Delaunay triangularization
(no circumscribed circle will ever contain another node — guarantee against ‘sliver’ triangles).

In 3-D: Finding good tetrahedral sets can even become a dominant cost (espeC|aIIy in
changing geometries) 50 ' T ‘ T o

45+
Mesh-free:

In both 2-D and 3-D, it is very fast to ‘scatter’ nodes
guasi-uniformly, with prescribed density variations and 35
aligning with boundaries.

30
In any-D, all that RBF-FD needs for each node only a list
of its nearest neighbors — total cost O(N log N) when 25
using kd-tree. y
20
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RBF-FD stencils — Some concept illustrations

2-D planar

Hybrid Cartesian-
guasi-uniform
node set.

Set-up we'll use

later for seismic
modeling.

3-D volume

Surface in 3-D space 2.5

o
[+

2-D-like stencil on curved
surface.

Normal direction (if present)
can be discretized separately.

[llustration by Grady Wright

o
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o
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Calculation of weights in RBF-FD stencil for a linear operator L

Strategy: Choose weights so the result becomes exact for all RBFs interpolants of the form

s(¥)= 2" Al X=X ) +{p,(X)} with constraints 3 4p,(x)=0

System to solve for weights in case of
2-D, when also using up to linear
polynomials with corresponding
constraints —

A-matrix entries A ; =¢(|| X —X; [I)

In result vector ¥ should be ignored.

Compact formulation of system:

Optimization interpretation:

pT

1ox oy Tw] [SUx-xDl,
x|, | | Lex-x D
1 i 7| L1,
X i 0 2 Lx|,.,
Yo | L7 Ly],_,

E

. . T T .
The same linear system also solves ~ MIN EW Aw—-w' L¢  subjectto pTyw= Lp
W o _/

.

Keeps the w small

Exact for pvolynomials

- Under refinement, order of convergence matches the degree of the polynomials;
- RBFs do not need to be correspondingly smooth; r3, r>, r 7 are good choices. Slide 6 of 21



Common RBF types: , >
Infinitely smooth, e.g. GA: ¢(r) =e‘(”) , MQ: ¢(I’) = \/1+ (gr)

Finitely smooth, e.g.  PHS: @(I) = re" logr, ¢(r)= rem

Three main choices when creating RBF-FD stencils / weights:

Smooth RBFs without poly:
Need ¢ small; Either choose ¢ so cond(A) about 108, or use a stable algorithm

(such as RBF-QR, RBF-GA, RBF-RA; initialization cost increase about 10 times,
but task ‘embarrassingly parallel’)

Smooth RBFs with poly:

Typically little gain, since the polynomials lie in about same space as the RBFs.
However effective for PDEs at interfaces (used for seismic modeling, described below)

PHS with poly:
Will become our preferred choice in most cases.
Some key features illustrated in the next four slides.
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Accuracy of PHS + poly RBF-FD stencils away from boundaries

lllustrations from Fornberg and Flyer, SIAM book, 2015;
Additional description in Flyer, Fornberg, Bayona, Barnett, 2016.

Scatter n = 56 nodes to approximate, near the stencil center, three test functions of increasing smoothness
L R=0.1

1 = —

05} 7 ST

05} \ - e "

Note:

Under refinement, power
in RBFs become irrelevant;
accuracy order given by
the polynomials

Ingw | error | , double precision
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PHS + poly: Major differences between Global RBFs and RBF-FD

Total number of nodes

Number of nodes per stencil
Number of separate polynomials

Determines the order of convergence

Main role of the PHS

Main role of the ploynomials

Comments

Global RBFs

N
N
1

PHS

Form the approximation
Provide conditionally
(positive or negative) defi-
nite operators

Worsening conditioning
for m large => keep m low
(implying accuracy low)

RBF-FD:

N
n<<N
N

poly
Improve conditioning
Form the approximation

Guideline: Bring up
number of polynomial
terms to around n/2

Under refinement

(N increasing, n fixed),
the PHS coefficients
‘fade out’
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Conditioning of linear system for creating PHS+poly RBF-FD stencils

R=0.3 R=0.1
21

R=1
Errors: mJ/ & J/ @ \?)( i’jjl M/{
The figure to the right is identical to 3 Ejﬁ | N 15} LA,

no
—_

—_
w

m
—_
~

—_
(3]

: (
% 3 13) YR 13/ S0 0 ry
the one two slides ago: 8§ £ g V) _
559 9 off (4 .
5 o7 7F 70 ]
—. o
g = 5 < 5 s -
. oy 0 . . ° 3 3 \ | ! — 3l ! [ o
Linear system conditioning: L - , AR AR
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Degree of polynomial terms Degree of polynomial terms Degree of polynomial terms

Bottom row of figures R=1 R=03
suggest disasterously high ol \\)\ . \V/::h/
a .
T

condition numbers 17 17\/V\
15

15 1

13 13 A2 ]

This is an example where condition : 11~/\—J-D\ 11 -

number is completely misleading g

6 o

Simpler example still of same —a— 7} ~— ) //ﬁ
0 2 4 6 8 0 2 4 6 8

situation:

—_—

5

Fm
=

In:n_:;10 (condition number)

RBF degree m; o(n

- W ;M ~ O
- W o ~ O

0 2 4 6 8
Degree of polynomial terms Degree of polynomial terms Degree of polynomial terms

16100
Example: 1100 H_H ; cond(A)=10%% . Nevertheless, NO loss in significant digits when
! solving by Gaussian elimination. Equivalent situation for present
systems; illusionary issue only matter of scaling rows/columns.
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Character of high order PHS+poly RBF-FD approximations near boundaries
(Observation described in Bayona, Flyer, Fornberg, Barnett, 2017)

Regular FD weights of increasing orders of accuracy, 4
to approximate u’’(0) one step in from a boundary: a
x=-1 0 1 2 3 4 5 6 1 I
: ﬂ ! -
0

1.0000 |-2.0000 | 1.0000 . .ﬂ]
1.0000 |-2.0000 | 1.0000 0.0000 “]m
0.9167 |-1.6667 | 0.5000 0.3333 -0.0833
0.8333 |-1.2500 (-0.3333 1.1667 -0.5000 0.0833
0.7611 |-0.8167 |-1.4167 2.6111 -1.5833 0.5167 -0.0722

order of accuracy
0.7000 |-0.3889 (-2.7000 4.7500 -3.7222 1.8000 -0.5000 0.0611 A

x-coordinate of nodes

Last line shows complete loss of diagonal dominance for increasing accuracy
To the right — magnitude of the weights from 2" to 6t order

PHS+poly generated weights, ¢(r) = r 3 with poly degree 7

The front row in figure to right matches the back row in the figure abowe

When adding still further nodes (making the stencils even more

one-sided):

- Accuracy remains locked to 6" order

- Stencil returns almost perfectly to perfect diagonally
dominant case of [1-2 1], centered at the node of interest

- Result can be deduced from optimization interpretation

.1
min EWT Aw—w' L¢  subject to PTw= Lp
w

%f—/ )
Keeps the w small Exact for polynomials

The result generalizes to more space dimensions, making X-coordinate of nodes
PHS+poly very attractive for use in bounded domains.
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RBF-FD example: Convective flow around a sphere
(Fornberg and Lehto, 2011)

o5} 82550
RBF-FD stencil illustration: N =800 ME nodes, n = 30.

No surface-bound coordinate system used, implying = F5%0° .
no counterpart to pole singularities 05l G

ofo’o®

Test problem: Solid body rotation around a sphere
Initial condition: Cosine bell
Smooth (GA) RBFs, no polynomials. =
N = 25,600, n =74, RK4 in time

Key novelty: Stability achieved by use of hyperviscosity

Numerical solution:
- No visible loss in peak height; minimal trailing wave trains
- For given accuracy, the most cost effective method available

N 1

08 . o8l
06 . o |
04 o
02
0

064,
04 .
0.2

O

1 revolution
1,000 revolutions
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Depth (m)

RBF-FD Example: Seismic Exploration
Forward vs. Inverse Modeling

2-D vertical slice near Madagascar:

Distance (m)
o 2000 4000 8000 8000 10 000 12 000 14 .ooo " 1 e‘ooo 17 000

o -4

ransition layers at
water bottom

Region inside dashed
rectangle simplified

to form standardized
Marmousi test problem

(shown on next slide)

Figure adapted from Martin, Wiley and Marfurt: Sand o . e
Marmousi2: An elastic upgrade for Marmousi (2006)

Forward modeling Inverse modeling

Assume subsurface structures Adjust the subsurface assumptions to
known, then simulate the reconcile forward modeling with seismic
propagation of elastic waves data.

Requires fast and accurate solution of a vast
number of forward modeling problems.
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Governing equations for elastic wave propagation in 2-D

0

20

40

60

80
100

il /" S et

0 50 100 150 200 250 300 350

Acoustic (pressure wave) velocities T Dependent variables:
u, v Horizontal and vertical velocities
f, g, h Components of the symmetric

Elastic wave equation in 2-D stress tensor
(pu, =f,+g, Material parameters:
PV, =0,+h, p Density
) ft —(A+ Zﬂ)ux n ﬂVy A, L Lameé parameters (compression and shear)
0, - /J(UX + Vy) Wave types:
h =(A+2u)v, + Ay, Pressure ¢, =./(1+2u)/p, Shear ¢, =\A/p

Also: Rayleigh, Love, and Stonley waves
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Region Type Computational Remedies

Smoothly Dispersive errors High order approximations

variable 1980’s From 2" order to 4t" order FD (or FEM)

medium 2010’s 20t order (or higher still) FD

Interfaces Reflection and Analysis based interface enhancements on grids:
transmission of Very limited successes reported in the literature
pressure and shear in cases of complex geometries
waves

Industry standard:
Refine and ‘hope for the best’ (typically 1%t order)

Present novelties:
(Martin, Fornberg, St-Cyr, 2015; Martin, Fornberg, 2017)

- Distribute RBF-FD nodes to align with all interfaces
(this alone suffices for 2" order)

- Modify basis functions to analytically correct for
interface conditions (RBF-FD/AC)
High orders then possible also for curved interfaces
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RBF-FD implementation

Regular Finite Differences (FD) can be used if:
- Of high order of accuracy, and no near-by interfaces
However:

- Mapping spatial grids to align with interfaces is hopeless

in realistic geometries
- Regular FD approximations aare aaflawed concept for
mixed derivatives (such as = oy )

X

oy

So instead use RBF-FD:

- Align nodes locally to each interface

- Canstill use grid / regular FD away from interfaces (a)
- Need to get high order accurate stencils for node sets

such as (b) and (c).

Case (b):

p—

-------------------------

.........................

.........................

.........................

ooooooooooooooooooooooooo

-------------------------

- Smooth RBFs work fine, as does PHS+poly. In the latter case, the poly ‘take over’ under refinement.

Case (c):

- Here we need RBF+poly. We can here alter the polynomials to build in the the analytic ‘kink” information.
- Inthis case, the polynomials again ‘take over’ under refinement, now both at interfaces and in smooth
regions, ensuring overall high orders of accuracy (with the RBFs still assisting with stability).
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‘Mini-Marmousi’ test case

0 05 1 15 2 25 3

Relative p-wave velocity in elastic medium

1

0

0 05 1 15 2

Initial condition forxv attime t=0

¥ .
f .
—) §

06 )
>\J4 %""

0

Accurate solution for v at time t=0.3

0.015

001

0.005

-0.005

-001

-0.015

Errors with RBF-FD/AC discretization,
at t=0.3, using n =19 node RBF-FD stencil

x 10
1

1 r l‘l
08 -
| e |
06 ¥ .
> / ' 0
04 .
—
02 o "ﬂ‘
3 o
0 05 1 15 2 25 3 <4
N = 38,400 nodes
;‘10"
1
08
06
> 0
04 -
02
0
0 05 1 15 2 25 3 &

X

N = 153,600 nodes

Typical node separation reduced by factor of
two; error reduced by factor of 10, indicating
better than 3" order in all regions ;.17 o 21



RBF-FD Example: Calculate weights for numerical integration over a sphere

(Reeger, Fornberg, 2016)

Algorithm steps: Concept illustration:

1. Given nodes on the sphere, create
a spherical Delaunay triangularization

2. For each surface triangle, project it
together with some nearby nodes to a
tangent plane

3. Find quadrature weights over the local
tangent plane node set for the central
planar triangle

i 11X oy [ w ] Lol X=X, ) |, |
PR EA NI
1o 1 Wo.| | L,
X1 Xn i O Wn+2 LX |X=x
LN Ii I L Wnss | Ly |1=X

With PHS+poly, RHS of linear system
available in closed form.
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4. Convert weights from the tangent plane
case to corresponding weights on
sphere surface.

Very simple, explicit conversion formula
available that preserves accuracy order for
any arbitrary curved smooth surface.

5. Add together the weights for the
individual triangles, to obtain the
full quadrature weight set for the sphere

Resulting accuracy order will match that of the supporting
polynomials in the PHS+poly planar approximation (typically implemented to O(h’)).

Computational costs:

- O(N log N) operations for N nodes for kd-tree to find ‘nearest neighbors’,
- O(N) operations to find all N weights; this task furthermore ‘embarrassingly parallel’.

Generalizations beyond sphere case:
- Smooth closed surfaces (Reeger, Fornberg, Watts, 2016)
- Curved surfaces with boundaries (Reeger, Fornberg, 2017)
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Some conclusions

Discussed here:

- There is a natural method evolution: FD = PS = RBF = RBF-FD

- RBF and RBF-FD methods combine high accuracy with great flexibility for handling intricate
geometries and also local refinement

- For RBF-FD, PHS + poly is often the preferred choice: High accuracy, no shape parameter,
well conditioned, and excellent boundary accuracy (even for one-sided stencils)

- RBF-FD highly effective not only for PDEs, but also for quadrature over smooth surfaces

Additionally: (Natasha Flyer and collaborators)

- RBF-FD methods compete very favorably against all previous methods on a large number of
applications, demonstrated especially in the geosciences

- RBF-FD is particularly effective on GPUs and other massively parallel hardware
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87

SIAM book published November 2015 A Primer on Radial Basis
Functions with Applications

to the Geosciences

Summarizes the evolution FD = PS = RBF = RBF-FD

Surveys global RBFs BENGT FORNBERG

University of Colorado
Boulder, Colorado

First book format overview of RBF-FD
NATASHA FLYER

National Center for Atmospheric Research

Geophysics applications include: S
- Exploration for oil and gas,
- Weather and climate modeling,

- Electromagnetics, etc. ey = e
IN APPLIED MATHEMATICS
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